از یک دید کلی شاخه قدرت مهندسی برق به چه مباحثی میپردازد؟
برای کامل خواندن متن به ادامه مطلب مراجعه کنید.
برای کامل خواندن متن به ادامه مطلب مراجعه کنید.
از یک دید کلی شاخه قدرت مهندسی برق به چه مباحثی میپردازد؟
برای کامل خواندن متن به ادامه مطلب مراجعه کنید.
پست محلی است که تجهیزات انتقال انرژی درآن نصب وتبدیل ولتاژ انجاممی شودوبا استفاده از کلید ها امکان انجام مانورفراهم می شود درواقع کاراصلی پست مبدل ولتاژ یاعمل سویچینگ بوده که دربسیاری از پستها ترکیب دو حالت فوق دیده می شود.
برای کامل خواندن متن به ادامه مطلب مراجعه کنید.
جبران سازی توان راکتیو یکی از ابزار بهینه سازی هزینه انرژی و برگشت سریع سـرمایه است. در طول چند سال گذشته با بهره گیری از مواد جدید و روشهای تولید پیشرفته، خازنهایی با تلفات بسیار اندک در حجم های کوچک ساخته شده است. با توسـعه وتولیـد کنتاکتـورهای خـازنی و رگـولاتورهای میکـروپرسسوری بسیار پیشـرفته که تضمین کننده رفتار مناسب وبهینه بانک خازنی به تغییرات بار است، بانکهای خازنی کاملا قابل اعتماد گردیدهاند. با این وجود دلایل بسیاری بر لزوم آشنایی مشاوران و مصرف کنندگان باجنبه های پیچیده این موضوع وجود دارد.
برای کامل خواندن متن به ادامه مطلب مراجعه کنید.
مقدمه
با تقاضای رو به افزایش برای انرژی الکتریکی، ولتاژهای انتقال نیز رو به افزایشند. انتقال توان زیاد به مسافت های دور، که به علت مبادله قدرت بین کشورها می باشد، نیاز به کابل های فشارقوی موثری دارد تا در مناطق شهری یا برای عبور زیر زمینی یا دریایی استفاده شود. امروزه ولتاژ عملیاتی کابل های فشارقوی الکتریکی تولیدی تا ۵۰۰ kV افزایش یافته است.
برای کامل خواندن متن به ادامه مطلب مراجعه کنید.
بروز اتصال کوتاه در سیستمهای قدرت به علت وجود اضافه ولتاژهای موقت و گذرا و همچنین آسیب دیدن برخی تجهیزات پیشامدی عادی است. بهنگام وقوع خطای فاز به زمین، ولتاژ فازهای سالم نسبت به زمین و بدنه تجهیزات به مقدار قابل توجهی افزایش مییابد. زمین کردن موثر نقاط نوترال در سیستم قدرت باعث کاهش این اضافه ولتاژها میشود. در اثر بروز خطای اتصال کوتاه فاز و یا فازها به زمین، جریان زیادی به زمین داخل میشود و باعث به وجود آمدن گرادیان پتانسیل سطحی بزرگی در محوطه پست میشودو ممکن است کارکنان را در معرض شوک ناشی از ولتاژ گام یا تماس قرار دهد. وجود شبکه زمین با فاصله مناسب بین هادیهای آن باعث کاهش گرادیان پتانسیل سطحی خواهد شد. از مهمترین پارامترهایی که در طراحی شبکههای زمین مدنظر است می توان به ولتاژ حلقه (مش)، ولتاژ گام، ولتاژ تماس و مقاومت شبکه زمین اشاره کرد که با طراحی شبکه زمین مناسب این پارامترها تا حد مجاز پایین میآیند.
برای کامل خواندن متن به ادامه مطلب مراجعه کنید.
سیستم های قدرت با سطح ولتاژ ۱۰۰۰ kv بالاترین سطح ولتاژ بکاررفته برای انتقال قدرت توسط خطوط انتقال هوایی طویل می باشند. در این سیستم ها، ترانسپوزه نمودن هادیهای خطوط ۱۰۰۰ kv بواسطه مشکلات عایقی امکان پذیر نبوده و لذا این خطوط از نظر ساختاری نامتقارن می باشند. بنابراین برای تحلیل رفتار نامتقارن این خطوط برخلاف خطوط ترانسپوزه شده و متقارن نمی توان از ابزار مولفه های متقارن استفاده نمود. همچنین چون عدم تقارن ولتاژ و جریانی که در این خطوط ایجاد می شود منشاء گرمایش ژنراتورها و ترانسفورماتورها میگردد، بنابراین یافتن راه حلهائی برای متعادل نمودن عملکرد این خطوط ضروری و لازم می باشد.
برای کامل خواندن متن به ادامه مطلب مراجعه کنید.
می دانیم در شبکه های جریان متناوب توان ظاهری که از مولدها دریافت می شود به دو بخش توان مفید و غیر مفید تقسیم می شود . نحوه این تقسیم به شرایط مدار بستگی دارد به این معنی که هر قدر ضریب توان CosΦ به یک نزدیکتر باشد سهم توان مفید بیشتراست . این اتفاق در مدارتی رخ می دهد که مصارف اهمی آن بیشتر است .مانند سیستمهای روشنایی یا تولید گرما توسط انرژی برق . اما می دانیم که سهم عمده مصارف شبکه ها را مصرف کننده های (اهمی – سلفی ) دریافت می کنند . مانند الکتروموتورها – ترانسفورماتورهای توزیع – چوکها و …. که درآنها سیم پیچ یا سلف نقش اصلی را ایفا می کند . در سیمپیچها به علت خاصیت ذخیره سازی انرژی الکتریکی بصورت میدان مغناطیسی توان همواره بین شبکه و سلف رد و بدل می شود . سلف در یک چهارم زمان تناوب توان دریافت می کند و در یک چهارم بعدی زمان ، توان را به شبکه پس می دهد .
برای کامل خواندن متن به ادامه مطلب مراجعه کنید.
عملکرد ترانسفورماتور در سطوح مختلف نقش کلیدی و موثری در حفظ پایداری و ارتقای قابلیت اطمینان شبکه قدرت دارد، اما عوامل متعددی از قبیل بهرهبرداری غلط، عدم انجام سرویس و تعمیرات به موقع که ناشی از عدم دسترسی به اطلاعات جامع درخصوص ترانسفورماتور است، موجب به وجود آمدن شرایط بحرانی برای آن میشود. این شرایط بحرانی علاوه بر اینکه منجر به کاهش طول عمر ترانسفورماتورها (پیری زودرس) و یا تحمیل هزینههای تعمیرات و تعویض قطعات آن میشود، بعضاً موجب از مدار خارج شدن ترانسفوماتورها و به دنبال آن محدودیت در انتقال قدرت در شبکه میشود. با توجه به اهمیت ترانسفورماتور، در سالهای اخیر کنترل بهینه آن در دنیا مورد توجه قرار داشته است و برای رسیدن به این هدف سیستمهای مانیتورینگ On-Line ترانسفورماتور که بر پایه استخراج پارامترهای ترانسفورماتور و پردازش و آنالیز آنها عمل میکنند طراحی و ساخته شدهاند. هرچند دستگاههای متداول حفاظتی ترانسفورماتور شامل انواع رلهها، ترمومتر، برقگیر و … برای تشخیص و حفاظت از خطا در شبکه استفاده میشوند، اما به دلیل اهمیت موضوع، امروزه مراقبت از ترانسفورماتور دامنه وسیعتری پیدا کرده و شامل انواع روشهای حفاظتی و نگهداری بازدارنده و تشخیص عیوب قریبالوقوع شده است. در حقیقت بسیاری از بهرهبرداران علاقمند هستند که از وضعیت داخل ترانسفورماتورهای قدرت باخبر شوند. به این ترتیب علاوه بر جلوگیری از وارد آمدن خسارات جدی به ترانسفورماتور، با اطلاعرسانی به موقع میتوان موجب تداوم انتقال انرژی الکتریکی شد.
برای کامل خواندن متن به ادامه مطلب مراجعه کنید.
در دهه ۷۰ میلادی، با پیدایش میکرو پروسسور، سازندگان تجیهزات (پستها) سعی کردند وسایل الکترومکانیکی را با وسایل نیمه هادی مجهز به میکروپروسسور جایگزین کنند. این وسایل در صنعت به نام وسایل الکترونیکی هوشمند (IED) شناخته شدند. IED قابلیتها و تواناییهای اضافی به وسایل افزودند نظیر تشخیص خطا وچک کردن خودشان، داشتن رابطهای مخابراتی و قابلیت ذخیره داده ها و وقایع سیستم. همچنین IEDها باعث شدند تا وسایل تکراری، حذف شوند چون قابلیت چندکار را داشتند.مجتمع کردن سیستم کنترل ایستگاهی (به هم پیوستن تمام IEDها به یک سیستم کنترل مجتمع پست (ISCS)) باعث کم شدن هزینه سیمکشی،ارتباط، نگهداری و بهرهبرداری میشود و کیفیت برق و قابلیت اطمینان آن را افزایش میدهد.با تمام این مزایا ISCS در آمریکای شمالی پیشرفت چشمگیری نداشته و یکی از دلایل عمده آن این است که رابطهای سختافزاری و پروتکلها برای IED ها استاندارد نشدهاند. البته زمان زیادی برای وضع استانداردها برای IEDها صرف شده است اما علیرغم فوری بودن این مساله هنوز توسط صنایع، استاندارد مشخصی پذیرفته نشده است. برخی استانداردها در این زمینه عبارتند از (UCA2.0)، Profibus (از IEC) و (DNP 3.0).
برای کامل خواندن متن به ادامه مطلب مراجعه کنید.
یکی از پدیده هایی که در ارتباط با تجهیزات برقدار از جمله خطوط انتقال فشار قویمطرح می شود، کرونا است. میدان الکتریکی در نزدیکی ماده رسانا می تواند به حدیمتمرکز شود که هوای مجاور خود را یونیزه نماید. این مسئله می تواند منجر به تخلیهجزئی انرژی الکتریکی شود، که به آن کرونا می گویند. عوامل مختلفی ازجمله ولتاز، شکلو قطر رسانا، ناهمواری سطح رسانا، گرد و خاک یا قطرات آب می تواند باعث ایجادگرادیان سطحی هادی شود که در نهایت باعث تشکیل کرونا خواهد شد. در حالتی که فاصلهبین هادی ها کم باشد، کرونا ممکن است باعث جرقه زدن و اتصال کوتاه گردد. بدیهی استکه کرونا سبب اتلاف انرژی الکتریکی و کاهش راندمان الکتریکی خطوط انتقال می گردد. پدیده کرونا همچنین سبب تداخل در امواج رادیویی می شود.
برای کامل خواندن متن به ادامه مطلب مراجعه کنید.